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1 Introduction

Sonoluminescence is a very complicated phenomena in which one or more small bubbles
are trapped in a standing accoustic wave and then excited to a resonant condition. Under
the right conditions, the resonance can be strong enough to cause the bubble(s) to implode
creating ultra-high pressures and temperatures, creating light pulses (i.e, sonoluminescence).
Understanding the stability of these bubbles is critical if they are to obtain the conditions
sufficient for Bubble Fusion to occur. To this end, we have developed a three-dimensional
direct numerical simulation (DNS) code that may be used for the analysis of both single and
multiple bubble dynamics. This code, PHASTA-2C, efficiently represents the fluid dynamics
of both phases (liquid and gas/vapor) and the interface between them. It is also capable
of resolving the various shock waves which may be created during bubble implosions. Thus

PHASTA-2C may be used as a HYDRO code (i.e, hydrodynamic shock code).

Existing computational methods used to solve two-phase flow problems, include front
tracking methods [1], boundary integral methods [2], volume of fluid methods [3], phase
field methods, front capturing methods, and level set methods [4, 5, 6]. All the above
mentioned methods have their own advantages and disadvantages. An advantage of front
tracking methods is with little resolution we can maintain high accuracy. However, significant
remeshing is needed to prevent the marker particles (which track interface) from coming
together at points of large curvature. Also the algorithms have to be modified to reconnect,
or disconnect the free surface separating the various fluids. Volume of fluid methods are based
on solving the conservation law for the volume fraction and they have excellent conservation
properties within each phase. However a disadvantage of the volume of fluid method is that it
is difficult to calculate the curvature of the front from the volume fractions. Furthermore, its
extension to compresible flow sacrifices some of the aformentioned conservation properties.
Although the level set method does not possess the same inherent conservation properties
as volume of fluid methods or front tracking techniques, the strength of this method lies in
it’s ability to efficiently represent an arbitrarily complex interface very accurately, thereby
allowing the computation of flows with surface tension and rapidly changing topology. Thus,

in PHASTA-2C the interface between the two phases is captured using the level set approach



developed by Osher, Sethian and Sussman et al. [4, 5, 6], and the flow in each phase is

represented by the Navier Stokes equations.

The Streamline-Upwind/Petrov-Galerkin method (SUPG) introduced by Hughes and
Brooks,et al. [7] is used to descretize the governing flow and level set equations. As discussed
by Hughes et al. [8], SUPG is an excellent method for problems with smooth solutions,
but typically introduces localized oscillations about sharp internal and boundary layers.
To improve this a discontinuity-capturing term proposed by Hughes et al. [9] is added
to the formulation. This term provides additional control over gradients in the discrete
solution and considerably increases the robustness of the methodology. The continuum
surface force (CSF) model proposed by Brackbill et al. [10] is implemented in order to
incorporate the surface tension stresses. Also an improved re-distancing strategy is adopted
along with the discontinuity capturing to ensure the volume of the each phase is conserved
while re-distancing. The method developed enables us to accurately compute the flows with
large density and viscosity difference, as well as surface tension. In addition, the present

formulation allows the fronts to intersect, merge, break, and change topology.

Although the resulting algorithm predicts single phase compressible gas dynamics well,
for the compressible multiphase flows, it can lead to the spurious non-physical oscillations
across the material interface due to a smeared density profile. This can be easily attributed to
the radical change in the equation of state across the material front. So a numerical approach
similar to the “Ghost Fluid Method” developed by Fedkiw and Aslam et al. [4, 5, 6] has
been implemented. This strategy allows us to treat compressible multi-phase flows with
large density difference. The phenomena of sonoluminescence presents us with a challenging
problem, since it involves multiple shocks propagating with various strengths in each phase,
regions with discontinuities, in addition to a rapidly changing interface. To study the problem
efficiently, an adaptive mesh strategy is required. Hence the above discussed method has

been implemented with an adaptive meshing strategy.

Several numerical studies have been performed to test PHASTA-2C. The studies are
necessary exercises to reach the goal of developing a robust numerical method. Various

incompressible problems were considered to assess code performance. Concomitantly, they



can be used as a testing tool for solving the multiphase flows using the level set method. In
tandem they provide a check on the ability of the algorithm to treat deforming interfaces.
The incompressible test cases include the simple advection of a gas bubble in liquid, the ris-
ing of a single gas bubble under buoyancy, a three dimensional simulation of the formation
of a toroidal bubble, and finally the coalescence of two bubbles. Compressible analyses were
performed on a wide variety of problems. Initially the performance of the code was tested
against standard test problems to validate the predictions of important gas dynamics phe-
nomena. These includes, Sod’s shock tube problem, and a one dimensional standing shock
problem. A single phase converging spherical shock problem was studied to validate the pre-
diction of the shock waves and also the efficiency gained through the adaptive mesh strategy
has been demonstrated.The well known Rayleigh-Taylor instability problem was analyzed as
a test case for the computation of two-phase compressible dynamics with intreface propa-
gation. The wide and general (instead of a problem oriented) applicability of the developed
algorithm was demonstrated through the study of these various two-phase problems. The

DNS simulation of an imploding bubble dynamics was studied.

1.1 Overview

The outline of the report is as follows. In Section 2 we introduce the level set method.
Section 3 deals with the finite element formulations for solving the compressible Navier-Stokes
equations, in which we descretize in space using a stabilized finite element method (FEM)
to obtain a nonlinear system of coupled ordinary differential equations. In Section 4, we
describe the discontinuity capturing operator which was implemented to efficiently perform
the flow computations with sharp discontinuities or involving shocks. Section 5 presents the
details of the level set method and the finite element solution technique for solving both the
level set and the re-distancing equations. Section 6 deals with the modeling of the surface
tension force across the interface. To eliminate the spurious oscillations across the interface
in compressible flows a novel approach, based on Ghost Fluid methods, has been adapted,
and this is discussed in the Section 7. We discuss briefly the adaptive strategy used, in

Section 8, and in Section 9 we present the results obtained from the simulations.This section



has two parts. The first part containing the results from the incompressible simulations and
the second part containing the compressible simulations.In Section s:bubfus, a simulation
of bubble fusion is presented, and shown to be i good agreement with recent ORNL data.

Finally, in Section 11 some conclusions are drawn and future goals are presented.

2 The Level Set Method

The level set approach represents the free surface as a zero level set of a smooth function
and simultaneously maintains a level set function which is the signed distance from the
interface. Hence instead of explicitly tracking the interface, we implicitly “capture” the
interface within a field which is interpolated between the finite element vertices like any
other solution quantity (e.g pressure, velocity, temperature). This enables us to represent
the interface between the two phases accurately and to compute flows with high density
ratios and surface tension. As mentioned in [5], conventional conservative methods suffer
excessive numerical diffusion which smears the sharpness of the front. The level set function
is typically a smooth (Lipschitz continuous) function, denoted as ¢ , which eliminates the
difficulties that conventional conservative schemes incur.

Probably the most important advantage of level set methods is that the interface can
merge or break-up with no special attention. Furthermore, the level set formulation general-
izes easily to three dimensions. The actual location of the interface is never computed, since

the interface is embedded as a particular level set in a fixed domain.

A smooth level set function, ¢, is used to track the interface between the gas phase and

the liquid phase. In our formulations the interface, 5 , is the zero level set of ¢:

B ={z|¢(x,t) = 0} (1)
The level set function is positive in the liquid phase and taken to be negative in the gas
phase. Hence we have,
> 0,if € the liquid ,
¢(x,t) = { =0,ifx € B, (2)
< 0,if € the gas.



Hence we initialize ¢ to be the signed normal distance from the interface. Since the interface

moves with the fluid, the evolution of ¢ is governed by a transport equation:

8¢ B
g—F’UI'V(f)—O (3)

As discussed in Section 3, this additional advection equation for the level set scalar is solved
in a manner similar to the flow equations. The physical properties of the fluid in each phase

are calculated as a function of ¢ as given below

p(8) = L H(8) + pa(1 — H(9)), density (4)

and similarly,
(@) = mH(¢) + p2(1 — H(9)), viscosity (5)

where H(¢) is the Heaviside function given by

0,if ¢ <0,
H(¢) =14 1,if¢=0, (6)
1,if ¢ > 0.

2.1 Interface thickness

Use of the Heaviside function described above leads to poor results due to the assumed
zero thickness of the interface. Instead, it was replaced with an alternative description of
the interface as proposed by [5, 1]. Numerically, they substitute the smoothed Heaviside
function H.(¢) for the sharp Heaviside function H(¢) . The smooth Heaviside function is
defined as [6],
0,if ¢ < —e,
H(¢) =1 L[1+2+Lsin(Z2)]if |¢| <, (7)
1,if ¢ > €.
Where ¢ represents the signed normal distance to the free surface. The % contour of the sharp
Heaviside function H(¢) would have created jagged or staircase contours on any discrete
mesh. Instead, by giving the interface a thickness of ¢ = aAx where a > 1, sharp changes

across the interface are smoothed.



2.2 Re-initialization or re-distancing of level sets

In the formulation describe above, the front will have a uniform thickness so long as ¢
is maintained as a distance function. But, under the evolution of equation (3), the level
sets that are adjacent to the zero level set move with velocities different than that of a
zero level set. Therefore, the ¢ distance field gets distorted. In this case, one must re-
initialize the level set function on regular intervals in order to rebuild /maintain this signed
distance function. There are several ways to accomplish this re-distancing. We followed
the technique introduced by Sussmanet al. [5]. Its virtue is that the level set function is
re-initialized without explicitly finding the zero level set. The idea is to solve the partial

differential equation

00 = 561~ va)), 0
where
“1,if ¢ <0,
S(¢)=1 0,ifp=0, ¢, (9)
1,if ¢ > 0.

d(x,0) = ¢(x,t) and 7 is a pseudo time. Given any initial data for ¢, solving this equation
to steady state provides the re-distance distance field ¢ with the property |V¢| = 1, since
the convergence occurs when the right hand side is zero. The sign function S(¢) controls
the flow of information. If ¢ is negative, information flows one way, and if ¢ is positive,
information flows the other way. The net effect is to straighten out the level sets on either
side of the zero level set. The steady solutions of Eq(8) are distance functions. Furthermore,
since S(0) = 0, then d(x, 7) has the same zero level set as ¢(x,t). Note, that this equation
is relaxed in pseudo-time 7 which is not related to the physical time ¢. Hence we only need
to solve Eq(8) for 7 =0 ... €, because the level set function re-initialization is required only

near the front. This is obvious if we re-write the Eq(8) as

od
E+w-Vd:S(¢), (10)
where,
vd
w:awwﬁ (11)



The equation (10) is a non-linear hyperbolic equation with the characteristics pointing out-
wards from the interface in the direction of the normal. The strategy adopted in PHASTA-2C

is to perform this re-distancing operation at the end of each time step.

3 The Finite Element Formulation of the Flow

Consider the compressible Navier-Stokes equations (complete with continuity and total en-

ergy equations) written in conservative matrix form (see [11, 12] for details ):

U,+FY—-Fif=8 (12)
where,
U, 1)
U2 (51
U = U3 - ,0 U2 9 (13)
U4 us
Us } Ciot J
0 )
O
F2Y = U 4+ p{ 6y ¢, (14)
d3i
(Ui )
( O W
T1i
F(z'ﬁff = T2 (15)
T3i
[ Tij Ui — di )
(16)
and,
1 Uj j + Uj i
Tij = 2(pu + pr)(Sij(u) — gSkk(u)sz'j) , o Sij(u) = 5 (17)



pr ULy
g =—(k+ HT)T,z' ) KT = Cpﬁ ) ot = € + ; . )
T

e=cT (18)

The variables are: the velocity u;, the pressure p, the density p, the temperature 7'
and the total energy, e;;. The constitutive laws relate the stress, 7;;, to the deviatoric
portion of the strain, Sfj = Sij — %Skk&j, through a molecular viscosity, u, plus turbulent
viscosity, pur. Similarly, the heat flux, g;, is proportional to the gradient of temperature
with the proportionality constant given by the addition of a molecular conductivity, x,
and a turbulent conductivity, k7 which is assumed proportional to the turbulent viscosity
as described above. The formulations presented in this work can accommodate a general
divariant fluid. A variety of equations of state can be considered; for example, the gas phase
may be assumed to giverned by the ideal gas and the liquid phase was governed by a simple
linear acoustic equation of state. Note that here we do not consider two fluids (with two
viscosities, two conductivities and two constitutive laws) but instead the level set field ¢
will allow us to consider these fields as one global flow field for each varying state variables.
Finally S is a body force (or source) term, such as gravity and the force due to the surface
tension. The representation of the surface tension surface force as a body force applied on

the interface is dealt in detail in Section 6.

For the specification of the methods that follow, it is helpful to define the quasi-linear
operator (with respect to variable vector, Y') related to Eq(12) as,

0 0 0 0
=A;—+A— - —(K;;— 1
which can be naturally decomposed into time, advective, and diffusive portions
L =L+ Loy + Las- (20)

Here A; = Fj‘dlv/ is the 7" Euler Jacobian matrix, K;; is the diffusivity matrix, defined such
that K;;Y ; = F?iﬁ, and Ay, = U,Y is the change of variables metric. For a complete
description of Ay,A; and K
(12) as simply LY = S.

ij, the reader is referred to [13, 14]. Using this, one can write

To proceed with the finite element discretization of the Navier-Stokes Eqs(12), we must

define the finite element approximation spaces . First, let & C RY represent the closure

10



of the physical spatial domain (i.e. Q UT where I' is the boundary) in N dimensions; only
N = 3 is considered here. The boundary is decomposed into portions with natural boundary
conditions, T, and essential boundary conditions, 'y, i.e., ' = 'y UT). In addition, H*(Q)

represents the usual Sobolev space of functions with square-integrable values and derivatives

on €.

Next,  is discretized into n.; finite elements, 2°. With this, define the trial solution

space for the semi-discrete formulations as
Vi = {vlv(-,t) € H'(Q)™,t € [0,T], v|peqe € Pe(Q°)™, v(-,t) = g on Ly}, (21)
and the weight function space
Wi, = {wl|w(-,t) € H'(Q)™,t € [0,T], w|zeq: € Pe(Q°)™, w(-,t) =0o0n T}, (22)

where P;,(2°), is the space of all polynomials defined on Q¢, complete to order k > 1, and m

is the number of degrees of freedom (m = 5).

To derive the so called weak form of Eq(12), the entire equation is dotted with a vector
of weight functions, W € W, and integrated over the spatial domain. Integration by parts
is then performed to move the spatial derivatives onto the weight functions thus decreasing
the continuity requirements. This process leads to the integral equation (often referred to

as the weak form): find Y € V;, such that
/ (W-AY, - W, - F2Y+ W, F + W 8S)dQ
Q

— / W (—F}" 4+ F{) n; dT
el

+Z/ LW -7 (LY —8)d2= 0 (23)

The first line of Eq(23) contains the Galerkin approximation (interior and boundary) and
the second line contains the least-squares stabilization. SUPG (Streamline Upwind Petrov
Galerkin, see [15] for details) stabilization is obtained by replacing £” by £, . The sta-
bilization matrix 7 is an important ingredient in these methods and is well documented in

Shakib [16] and in Franca and Frey [17]. Note that we have chosen to find Y instead of U. As

11



discussed in Hauke and Hughes [18], U is often not the best choice of solution variables, par-
ticularly when the flow is nearly incompressible. For the calculations performed herein, the

SUPG stabilized method was applied with linearly interpolated pressure-primitive variables,

( ) ( )
Y p
Y, U1
Y=Y, p =94 w (24)
Y, us3
\ }/5 / \ T J

By inspecting Eqs(15)-(18) it is clear that all quantities appearing in Eq(23) may be
easily calculated from Eq(24).

To develop a numerical method, the weight functions (W), the solution variable (Y'),
and it’s time derivative (Y ;) are expanded in terms of basis functions (typically piecewise
polynomials; all calculations described here in were performed with a linear basis function.
The extension of the quadratic and cubic basis can as well be done on the validated quadratic
and cubic bases implementation by[19]). The integrals in Eq(23) are then evaluated using
a Gauss quadrature resulting in a system of non-linear ordinary differential equations which

can be written as,

MY = N(Y) (25)

where the under bar is added to make clear that Y is the vector of solution values at discrete
points (spatially interpolated with the finite element basis functions) and Y are the time-
derivative values at the same points. Finally this system of non-linear ordinary differential
equations is discretized in time via a generalized-« time integrator (see [20]) resulting in
a non-linear system of algebraic equations. This system is, in turn, linearized and with
Newton’s method which yields a linear algebraic system of equations to be solved at each
Newton iteration. Newton iterations continue until the non-linear residual is satisfied at each
time step, after which the method proceeds to the next time step, starting the process over

again.

12



4 The Discontinuity Capturing Operator

Despite the success of the SUPG, it is well known to be insufficient for flows which contain
discontinuities. The SUPG does not preclude overshooting and under-shooting about sharp
layers. Therefore, Hughes et al. [21] suggested a simple technique for improving resolution
of sharp layers while maintaining the optimal rate of convergence. The new method adds an
additional “discontinuity capturing term” (DC) which has a form similar to the streamline
term, but acts in the direction of the solution gradient rather than in the direction of stream
line. The dependence of this term on the solution gradient results in a discrete method,
which is nonlinear even when the original PDE was linear. This is of little consequence to
the problems that are considered here, since the flow non-linearity is more severe than the

new non-linearity introduced by this operator.

The discontinuity operator adds an additional term to the original variational formula-
tion (23) as documented in Shakib [16]. This term provides additional control over gradients
in the discrete solution and considerably increases the robustness of the methodology. The
DC operator needs to satisfy only a few conditions: (7) in order to control the oscillations,
this operator should act in the direction of the gradient, (ii) for consistency it should be
proportional to the residual, (4ii) for accuracy, it should quickly vanish in smooth regions of
the solution. The term derived by Hughes et al. is of the form,

nel

/ IV W - [A]V VD (26)

here @5 is the generalized local-coordinate gradient operator, and v" is scalar discontinuity
capturing factor of dimension one over time, [A,] is the conversion matrix from conservative
variables to the entropy variables and V' indicates the entropy variables [16]. The DC
operator can be written more explicitly (for our choice of variables Y') as,

nel

/ gIWh - [Ag]Y ;d (27)

where Y is the pressure primitive variables described in equation (24) and g% is the inverse

13



of the Jacobian of the mapping. The discontinuity factor " is defined as,

(LY —-S)- A, (LY -8)]®
giyY ;- AODCYJ-

v = maz {0,

_{@Y—sy%wY—S)

28
gIY ;- AJY 2%)

5 Finite Element Formulation of the Level Set Method

5.1 Finite element discretization

Equations (3) and (8) can be represented by a single scalar advection equation of the form

0¢ B

In case of the level set equation the forcing function, S, is zero and in the case of re-distancing
equation S is given by Eq(9). This section presents the general finite element formulation for
the scalar advection equation (29). The solution strategy for solving this equation is similar

to flow equations discussed in Section 3.

Again the spatial discretization is performed using the finite element method, and the
finite element approximation spaces namely the solution and the weight function space are
as defined in Section 3. In keeping with the approach of finite element method described
above write Eq(3) in the residual form. To derive the weak form of residual form, Eq(3) is
multiplied by a smooth weighting function w belonging to a space of functions w € Wy, (the
scalar counterpart of the vector space defined in Section 3). The product is then integrated
over a spatial domain. As the equation is solved in the convective form, we do not integrate
by parts thus there are no boundary integrals. The resulting weak form is: find ¢ € V}, such
that,

Nel

/ (wo s + wu;p; +wS)dQ + Z LTwr (s +uip;— S)d2=0 (30)
Q e=1 Qe

Where 7 is the stabilization parameter (defined earlier). By replacing £T by LI, (for the

adv

scalar equation L1, = uia%i), we obtain the SUPG (Streamline Upwind Petrov Galerkin,

see [15] for details) stabilization. Next, the weight functions (w), the solution variable (¢),

14



and it’s time derivative (¢ ;) are expanded in terms of linear basis functions as before. The
integrals are then evaluated using Gauss quadrature resulting in a system of non-linear

ordinary differential equations which can be written as
M¢ = N(¢) (31)

The solution of this system is analogous to that of the flow. The two systems (flow and

scalar) are iterated until convergence is achieved.

5.2 Volume constraint

During the iteration of vectors and scalar the interface is convected with the local flow
speed, which, as mentioned before destroys the distance function. As mentioned earlier, this
distance function is restored by the solution of Eq(10) via a finite element discretization
as described above. During this re-distancing step, additional care is taken to restrict the
interface from moving. To constrain the interface, we implemented the strategy proposed
by Sussmanet al. [5] for the finite difference method. The principle behind the constraint
calculations is to enforce the volume filled by each phase in an element to remain constant,
when the re-distance step is applied. In order to minimize the volume variation, we project
the current values of the level set function, denoted as d¥, onto new values, denoted by d*
which satisfy,

H!(d%)(d* — d°)dx = 0. (32)

Qe
where,

0,if |d| > ¢,
H!(d) - 4 (33)

% E + %cos(”?d)] Jif |d] < e.

The projection described in equation (32) is implemented by assuming d* has the form,
d* = dF + Ao (7F — %) H!(d°) (34)

where \qe is assumed to be constant in §2¢ , and is given by,

g = — Jor HA) <k:) w (35)
Joo (HL(d))? dQe

15



In the current algorithm the integrals for estimating A in (35) are evaluated at the element
level and are projected onto the global nodes by L? projection. Then the equation (34) is
solved to obtain the constrained re-distanced level set function. This step is applied after

each re-distancing of the level set field.

6 Modeling of Surface Tension

In the present work, fluid interfacial motion induced by surface tension may play a significant
role. The surfaces tension force is a result of the uneven molecular forces of attraction
experienced by fluid molecules near the interface. Surface tension creates a microscopic,
localized surface force that exerts itself in both tangential and normal directions. We use
the continuum approach proposed by Brackbill et al. [10] in order to represent the surface
tension force as a body force. This model represents surface tension as a continuous three
dimensional effect across an interface, rather than as a boundary value condition at the
interface. The resulting body force due to surface tension can be written as

o _AOVH()

W (36)

where £(¢) is the curvature defined as

K(¢) =V - (%) (37)

and H(¢) is the Heaviside function as defined in equation (7). W is the Weber number given

by
_ p1 LU?
- g

w

(38)

The surface tension term and local inter-facial curvature are easily represented in terms of
the level set function. As the level set function in our formulations is a signed distance from
the interface, the curvature can be accurately computed from the level set function. The

form of the surface tension force as body force used here is due to Chang et al. [22].

16



7 Ghost Fluid Method

Although Eulerian schemes work well for most compressible flows, they have been shown
to admit spurious non-physical oscillations near the material interfaces. Fedkiw and Aslam,
et al. [23] proposed a new numerical method for treating interfaces in Eulerian schemes
that maintain a Heaviside profile of the density with no numerical smearing. They also
used the level set function to track the interface in their work, in addition they used ghost
cells(actually ghost nodes in their finite difference frame work) to prevent the smearing of
the density across the interface. The motivation for their method stems form the fact that
the non-physical oscillations encountered by Eulerian schemes across the material interface
are due to the radical change in the equations of state across the material surface. On
the other hand Lagrangian schemes won’t smear the density profile, and it is clear which
equation of state is valid at each location. But these Lagrangian schemes do have their
own problems when subjected to large deformations. A good summary of both Eulerian
and Lagrangian schemes is presented in [24]. The original method proposed by the authors
tracks the interface with a level set function which gives the exact sub-cell interface location.

At this interface , they solve an approximate Riemann problem similar to the methods in

[25], and [26].

interface 3
»

A
N

Figure 1: A typical triangular element containing interface

17
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global element numbet. |
|
Global node numbering |

1 2 2 P33 4
|
Local node numbering :
|

1 2 1 : 2 1 2
|
|

\
Interface

Figure 2: A 1-D example of global and local numbering

The approach taken in our work draws heavily on the method of Fedkiw and Aslam,
et al. [23], appropriately modified for a finite element frame work. The description of the
method is as follows. In our method we also use a level set function to keep track of the
interface and the zero level set represents the location of the interface. The positive level sets
representing the heavier fluid and the negative values representing the lighter fluid. Each
fluid satisfies a different equation of state on each side. The clear demarcation can be made
from the exact representation of the interface location by the zeroth level set. Then we define
a ghost element in addition to the existing element for every element which is intersected
by the interface. Hence the elements which contain the interface have the mass, momentum
and energy of both the fluids. This is done by evaluating the integrals in Eq(23) accordingly.
Figure 1 shows a typical two dimensional triangular element which is intersected by an
interface. For example, assume that the nodes 1 and 2 are in the liquid phase, while node
3 lies inside the gas phase. So for this element the integrals over the element are evaluated
assuming once the whole element is occupied by the liquid phase and next by assuming it
is entirely occupied by the gas phase. While building the nodal contributions to both the
right hand side and the left hand side, a choice is made between the liquid or gas integral
depending on whether the node lies in liquid or gas phase. So in the above example while
evaluating the local residual at node 1, we choose the liquid integral, on the other hand the

local residual at node 3 is evaluated based on the integral evaluation for gas phase.
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The method can be further explained by the following simple 1-D example. Consider
the simple 1-D domain shown in Figure 2. The domain is divided into three elements, and
the second element is intersected by the interface. Let us assume that the region to the
left of the interface contains the liquid phase and the region to the right contains the gas
phase. The figure shows both the local and the global node numbering. The finite element

discretization leads to the ordinary differential equation,

nelnode

> WiGp=0 (39)

B=1

Which implies if the weight functions are chosen to be arbitrary, then Gg = 0, where Gp is
obtained by assembling the local Gj. Note the B’ indicates the global node numbering, the
subscript ’b’indicates the local node number and the super script ’e’ indicates the element

number. For the above 1-D example the global assembly operation will be defined as follows,

G, =G} (40)
G:=Gj+G; (41)
G:=Gi+ G} (42)

(43)

The element level residual G, can be defined as

ngpt

i= [ si@anr =" gi() - W (44)

where,
nenl

g5 (&) = de(gk) - Np (45)
b=1

In the above equations 'ngpt’ denotes the number of Gaussian quadrature points and the
'nenl’ indicates the number of element nodes. The ghost fluid method calculates ge(fk) twice
for the elements that contain an interface. Once assuming the whole element is occupied by
the liquid and once by assuming this occupied by the gas. While evaluating g{f(gk), depends
upon whether node b contains the liquid phase or gas phase, ge(ék) is selected. In essence
the method assumes a ghost fluid in all the elements that contain interface. This ghost fluid
behaves as it is a pure liquid for the nodes that are in the liquid phase and behaves as pure

gas when seen from the nodes that are in gas phase.
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8 Adaptive Mesh Strategy

Adaptive strategies are an important tool in efficient finite element computations. Adap-
tivity affords the opportunity to obtain numerical solutions with a controlled accuracy with
minimum degrees of freedom. In addition adaptive refinement procedures have become im-
portant for increasing the reliability and reducing the cost of numerical computations in
many engineering problems. The current research deals with the problems that involve
multiple shocks with varying strength, regions with discontinuous solutions, and rapidly de-
forming interfaces. For such kind of problems the error in discretization may results into a
poor prediction of the actual physics. Hence it is important to maintain a high resolution
of the mesh in the regions that have large solution gradients. Also its well known that the
smoother regions of the flow often benefit from p-refinement, while regions with disconti-
nuities or sharp layers are better resolved using h-refinement. Despite the increase in the
computational resources, uniformly refined meshs for large scale three dimensional problems
will lead to an inefficient, and often, impractical computations. Hence, in the present work,
an adaptive strategy was implemented to refine and coarsen the mesh in regions of steep

gradients. The essential ingredients of an adaptive procedure are:

1. A tool for assessing the error of the solution computed with a given mesh.

2. An algorithm to define a new spatial discretization via h and/or p-refinement.

8.1 Error indicators implemented

Two different approaches can be used for assessing the error: error estimators ond error
indicators. Error estimators approximate a measure of the actual error in a given norm.
Error indicators, on the other hand, are based on more heuristic considerations. Hence
an error indicator only gives relative information about the error, but is typically easy to
compute and implement in the analysis code. In fluid mechanics computations, which involve
non-self-adjoint operators, little progress has been made on error estimators. For this reason

most of the studies in the fluid dynamics rely on local error indicators to refine the mesh
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without specifying a total error. In PHASTA-2C, error indicators were utilized for the

adaptive procedure.

There are many error indicators available in the literature. Most of them are similar
and based on the second gradient of a key variable. In the present studies a total of ten
error indicators are generated at all the nodes in the computational domain. The first three
error indicators are based on the L, norm of the residual of the three components of the
momentum equation. The next three are L, norm of the normal component of the shear
stress. The last four are based on the difference in the velocity and pressure at the current
time step to the average of the of the solutions obtained from the two previous time steps.
Although there is no general theory to guide the use of the last four error indicators, the

preliminary results seem promising. The ten error indicators used in the present work:

e; = N,(Lu; — £;)%dQ  i=1,2,3 (46)
Qe

e, = Na(Tij,j)de 1= 4, 5, 6 (47)
Qe
nstep
n=1
nstep

e = > (p—p) i=10 (49)
n=1

Where #%; and p are the average velocity and pressure interpolated between the solution
values at nth and n + 1 time steps. When computing two-phase flows an additional error
indicator must be considered. The above indicators are only weakly linked to the quality of
the representation of the the interface. Though the level set field is smooth, it does have a
discontinuous slope at the interface. The second derivative of the scalar field is therefore a
viable choice for indicating the location in need of refinement/high-resolution. This can be
readily achieved with the already available information in the algorithm. Our aim is not only
to refine, but refine it smooth enough around the interface. For this purpose we have used

the level set Heaviside function property to smooth the refinement at and near the interface.
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8.2 Refinement strategy

In PHASTA-2C the mesh generation tools developed at the Scientific Computation Research
Center (SCOREC) were extensively used. The mesh enrichment is done such that the in-
dividual elements are subdivided without altering their original location. As a first step
the model and the original mesh are loaded in to the adaptive code. Then the parameters
to control the adaptive procedure given through an input file and the values of the error
indicators at each node are read in. Based on this information the quantitative parameters
for re-meshing are chosen. Then the edges are marked based on the error measure. The
marking is allowed to propagate for a specified (typically on or 2) number of layers. This
serves two purposes. First it decreases the frequency that adaptivity must be carried out.
Second, it allows the mesh to change size in a smoother manner which is known to reduce
error.. Once the edges are marked, “mesh adapt” (a SCOREC tool) is used to refine the

mesh, and once the refinement is done, the mesh is smoothed.

8.2.1 Edge marking

The decision as to whether a mesh edge is to be marked or not is made based on both error
value and model classification information. Only those mesh entities whose errors are greater
than a threshold value and are classified on the closure of a prescribed entities are marked.

Three types of marking strategies were adopted.

1. mark a mesh vertex, if it’s error is greater than the threshold

2. Mark a mesh edge if error at it’s either of the bounding vertices is greater than than

the threshold value.

3. Mark a mesh face if error at it’s any of the bounding vertices is greater than the

threshold value.
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8.2.2 Mesh quality

Maintaining the mesh quality is one of the vital factors for a successful adaptive procedure.

The mesh quality wa s preserved by the following given conventions:

1. Mark the third edge if two of the edges of a face are marked
2. Always mark the longest edge if any of a mesh face is marked

3. If the original model has matched faces, always keep the marked edges on those faces

consistent.

9 Numerical Results and Discussion

The goal of this research is to simulate single and multiple bubble dynamics, however it
would be fool hardy to apply the new method described above into such a complex problem
without first validating that all of the relevant physics can be predicted on more simple, well
understood test problems. This was the motivation for the incompressible multi-phase flow
simulations presented in Section 9.1. Through these simulations the ability of the level set
method to represent the interface and robustness of the method for the topological changes
has been tested and compared to the available results in the literature. Section 9.2 focuses
on the compressible flow simulations. In particular, in this section we will demonstrate that
the newly developed code can: (i) capture shocks correctly, (ii) represents the compressible
gas dynamics accurately, (i) tracks very complex bubble motions including the bubble

implosion very efficiently,(iv) make use of unstructured and adapting grids.

9.1 Simulation of Incompressible multiphase flows
9.1.1 Simple advection of a cylindrical bubble

To assess the ability of the algorithm, a simple test problem of advecting a cylindrical bubble
through a rectangular domain was considered. The liquid is flowing with a constant velocity

of 1m/sec in vertical direction. The buoyancy force is not activated. Hence the bubble
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Figure 3: The computational domain and bubble position at t = 0.

should simply advect through the domain with the velocity of the liquid. The domain and

the initial position of the bubble are shown in the Figure 3. The computational domain

and 0 < z <1 and the mesh consists of

<80,

—-20<y

dimensions are —2.0 < z < 2.0
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Figure 4: Bubble position at various time instants
640 hexahedral elements (16 x 40 x 1). Periodic boundary condition is applied in x- and z-
directions. An uniform velocity of 1m/sec is specified at the inlet and a constant pressure
boundary condition is applied at the exit of the domain. The bubble radius is 1.25m, and the
25



ﬁ_%

Figure 5: The bubble position at t =0

bubble location is such that the bottom of the bubble is positioned at -1.25m. The motion
of the bubble through the domain is shown in the Figure 4. Clearly the bubble is advected
with the fluid velocity of 1m/sec and also the shape of the bubble is preserved along with

the conservation of the volume of the bubble.

9.1.2 Two dimensional Simulation of bubble motion under buoyancy force at a

medium Reynolds Number

The rise and the deformation of a 2-D gas bubble in an otherwise stationary liquid contained
in a vertical, rectangular container is investigated using the level set method incorporating

surface tension stresses.
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Figure 6: Evolution of rising bubble under buoyancy at ¢t = 0.05
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The density of the water and air are taken to be, 1000%, and1.226%, respectively,

—1 kg

m.sec’

which gives a density ratio of 1,000. The viscosity of liquid phase is taken as 3.5e

—3_kg

and the viscosity of the air to be, 3.58e¢ —, so that the viscosity ratio between the two

phases is 100. The domain width is 0.1m and the domain length is 0.5m. The initial and the

boundary conditions are shown in the Figure 5. The initial radius of the bubble is 2.5cm.

(2Ry)*/*/gpe
M

Bond Number as B = % then Re = 100, and B = 200. Grace et al. [27] presented

With the above parameters, if we define the Reynolds number as Re = , and
a diagram showing the effect of fluid properties and the equivalent bubble diameter on the
shape and the terminal velocity of an isolated bubble. According to their experiments for the
parameters chosen above (Eo=200, M=0.08),formation of a skirted bubble is reported. The
mesh used in simulations consists of 100 x 500 x 1 elements. Periodic boundary condition
is imposed in z direction. On the side planes, the normal component of the velocity (x-
directional velocity) is specified as zero, and a zero traction is also imposed. A constant
pressure boundary condition is prescribed at the outflow, and a zero velocity is assigned on

the bottom of the container.

When the bubble begins to rise owing to the buoyancy force acting on the bubble, the
pressure gradient at the lower surface of the bubble is higher than on the top surface, and the
vortex sheet which develops at the surface has a rotation (Figure 6) which induces the motion
of a jet of water that pushes into bubble from below. This phenomena is captured within
the numerical simulations presented in Figure 6, and Figure 7. These are the solutions at
the time instances of ¢ = 0.05 and ¢ = 0.15, respectively. At this stage the jet does not effect
the liquid above the bubble. The velocity of the upper surface of the bubble in comparison
to the rest of the bubble is low resulting into the shell form of bubble. With time, the water
jet from the bottom further pushes the bubble, which causes the lower surface to move more
towards the upper cap of the bubble (Figure 8) forming a skirted bubble. Eventually the
liquid jet pinches off the bubble and shreds satellite bubbles as shown in the Figure 8. This
result is consistent with the findings of Delnoij et al. [28] who also observed the formation of
spherical cap bubble and shredding of satellite bubbles. Walter et al. [29] also observed the
detachment of two small bubbles at the lower extremities of the main bubble, during the rise

of their two dimensional bubble. The solutions obtained from this method are also in good
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agreement with the Sussman et al. [5], who also carried out the simulation for the same
Reynolds and Bond number. In the simulations presented here actual piercing of the bubble
does not occur (leading to a toroidal bubble) due to the relatively low Reynolds number.
For a low Reynolds number, the liquid jet below the bubble is not strong enough to pierce
causing the bubble instead to rise as a cap as seen in Figure 8. The level sets remain a
distance function despite the changing bubble topology. The advantage of the levels sets
is also demonstrated as the shredded bubbles motion was predicted without altering the

algorithm.

9.1.3 Simulation of a three dimensional spherical bubble motion under buoy-

ancy force

To further demonstrate the capability of PHASTA-2C, a three-dimensional simulation of the
motion of the bubble was performed. Starting from a perfectly spherical bubble which is
initially at rest, the buoyant motion of the bubble is studied by tracking the interface using
the level set method.

For the full three dimensional simulations a 32 x 80 x 32 elements mesh was adopted. The
initial position of the bubble is shown in the Figure 9. The initial and boundary conditions
are same as the simulations presented in Section 9.1.2. The ratio of the rectangular column
width to the bubble diameter is 1.6 with 20 elements across the bubble diameter. Again a

Weber number of 100 is chosen for the simulations presented here.

As described earlier the liquid jet from the bottom tries to push the lower surface of
the bubble, which can be seen in Figure 10. The deformation of the bubble from a sphere
to an elliptic cap can be seen in Figure 11. Figure 12 shows the further deformation of
the bubble due to the impinging jet from the bottom.The view shown in Figure 12 is from
bottom, in which we can see the the liquid pushing the bottom surface closer to the top,
but not yet piercing the top surface. Eventually, at time ¢ = 1.25, the jet penetrates the
liquid bubble and lower surface pierces the top surface, which can be seen clearly in the
Figure 13. Thereafter the formation of the toroidal bubble is complete. Figure 14 shows the
corresponding side view of the bubble at time, t = 1.25. Figure 15 indicates that the toroidal
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Figure 9: Initial position of the spherical bubble. Here only the zero value of the level set is

shown to illustrate the bubble surface.
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Figure 10: Shape of the spherical bubble at t = 0.25. Surface as before with velocity vectors

added to show fluid motion.
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Figure 11: Shape of the spherical bubble at ¢ = 0.375.

bubble is about to break up; note the thin air pocket at the top, which is about to be carried
away into the liquid above the bubble. The vorticity in the bubble surface is transferred to
circulation about this annular toroidal bubble, and ultimately this toroid breaks up into a
ring of small bubbles in order to preserve the circulation. The features of three dimensional
bubbles reported from the experiments of Walters et al. [29] included the deformation of the
lower surface of the bubble by a jet of liquid, forming a so called liquid tongue, “the piercing
of the top surface and the resultant formation of a toroidal bubble with a very small bubble
in the center”, and an increase in the diameter as it rises further. We have also observed an
increase in inner and the outer radii of the toroid as it rises, and an expansion of toroidal

bubble.
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Figure 12: Rising spherical bubble at ¢ = 0.5.
9.2 Simulation of Compressible flows
9.2.1 Steady shock problem

To demonstrate the discontinuity capturing operator, and the refinement strategy, a classical
standing shock problem was considered. The selected problem consists of two flow regions
separated by a shock. If the flow properties on the two sides of the shock satisfy the normal

shock conditions, the shock will be stationary. The following initial conditions satisfy these

conditions. . ) .
M =2 M =0.57735
p=1 p = 2.66667
for z < 0 and for z >0 (50)
u=1 u = 0.37500
| = 0.1785 ) | p= 0.80357

(y =1.4 and ¢, =716.5)

The boundary conditions are set to the above data, and the y- and z-components of the
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Figure 13: Rising spherical bubble at ¢ = 1.25.

velocity are set to zero on the entire domain. The computational domain dimensions are
—195 < x <195 —05 <y <05, and 0 < z < 1 and the initial, mesh consisted of

39hexahedral elements (39 x 1 x 1).

The computed pressure using the Galerkin/least squares without the discontinuity term
is shown in the Figure 16. From the figure it is clear that the original position of the shock
is maintained by the method, which indicates that the methods is indeed a flux conservative
method. But the solution has small undershoots and overshoots near the shock. These
are however, very localized and do not corrupt the solution, a small distance away from
the shock. However, for the problems we are interested in, it is essential to capture these

discontinuities to represent the relevant physics of the problem accurately.

Figure 17 presents the computed pressure using the discontinuity capturing operator.
The solution obtained is free of under-shoots and overshoots. This shows that the discontinu-
ity capturing operator in PHASTA-2C is able to control the oscillations as desired. Moreover,

one can see from the figures that the steady shock conditions are preserved resulting in a
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Figure 14: Rising spherical bubble at ¢t = 1.25 (front view).
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Figure 15: Rising spherical bubble at ¢ = 1.5.
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non-smeared shock.

9.2.2 Sod’s shock tube problem

The purpose of this test is to demonstrate the capability of the code to predict the com-
pressible problems having the sharp discontinuities in the solution. A good test problem to
verify the accuracy of the numerical method and the resolution of the shock is a shock tube
problem, has been suggested by Sod [30]. The problem consists of a two different material
states separated by a diaphragm. Initially the fluid is at rest and p; = 1.0,p; = 1.0,u; = 0.0
on one side of the shock and p, = 0.125,p; = 0.1, us = 0.0 on the other side of the shock.At
time t=0 the diaphragm is broken, and a shock wave travels to the right and a rarefaction
wave moves towards left. Farther down the tube there will be a contact discontinuity. The
solution obtained with a resolution of 100 elements at t=0.2sec is shown in the Figure 18.

From the figure it is clear that the method is very well able to resolve all the shocks and
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Figure 16: Pressure predictions without the DC operator: ---- * exact solution,

solution

39



2.8

241 T

221 T

1.8 1

16 T

08 ! ! ! ! ! ! !
-20 -15 -10 -5 0 5 10 15 20

Figure 17: Pressure predictions with the DC operator: exact solution, ---- * SUPG

with DC operator solution

the discontinuities very accurately. Also we can see that, as expected, across the contact
discontinuity the pressure and the velocity are continuous although the density and the spe-
cific energy are discontinuous. Both the shock wave moving to the right and the rarefaction
waves are predicted well and at correct positions. Moreover, the predicted solutions are free
of numerical oscillations. The solution obtained compare very well with the numerical results

obtained using hight resolution schemes, and modern upwind schemes.

9.2.3 Implosion of a spherical shock wave using an adaptive mesh strategy

Next we considered the simulation of a strong spherical shock wave traveling to the center
of a spherical domain. Initially the spherical domain consists of a gas of uniform density
and pressure. A string shock wave is generate at t=0. The wave could have been generated,
for example, by a “spherical piston” which pushed the gas inward, imparting to it certain

amount of energy. The origin of the shock wave does not affect the solution, except the
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The solution of Sods shock tube problem at t=0.2 sec
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Figure 18: Sod’s shock tube problem

wave generated is spherically symmetric. As the wave converges to the center the energy
becomes concentrated at the front , and the wave gets strengthened. At the instant of
shock front reaches the center of the spherical domain, the problem becomes nearly singular.
This exercise clearly demonstrates the code’s capability to handle the intensifying shocks.
To resolve the strong shocks we need a really refined mesh. As the problem is fully three
dimensional, if we do the uniform refinement the mesh would be enormous. As the regions
away from the shock front does not need the fine resolution we need refine mesh only around
the shock front using the adaptive refinement strategy. As the shock moves in we coarsen
the regions which were refined earlier and refine the regions where the new shock front is

located. This strategy results in excellent savings in the computational cost.

The initial conditions are shown in the Figure 19. These conditions generate a shock wave
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T=575.68K
p=6.11pa

shock frontA (speed = 800m/sec)

Figure 19: Initial conditions for the imploding spherical shock wave
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Figure 20: Adapted mesh at t=0
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Figure 21: Spherically inward propagating shock at t=0.1sec
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Figure 22: Mesh adapted to the shock front at t=0.1sec
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Figure 24: Adaptively refined mesh at t=0.2sec
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Figure 25: Velocity and pressure distributions at t=0.3sec
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Figure 27: Shock wave reflecting back from origin at t=0.6080sec

moving with speed of 800m/sec, which corresponds to a Mach number of 2.3. As initially
the shock is located at the boundary of the domain, the mesh is refined near the boundary
as shown in Figure 20. The refined mesh consists of 715,651 regions(elements). Figure 21
shows the shock front at t=0.1 sec. At this point, the shock is getting strengthened slowly, as
one can see from the increase in the pressure at the front. Again the mesh is regenerated by
coarsening farther away at the boundary as the shock no longer exists there, Figure 22, and
refining the region in the vicinity of the shock. Again the number of regions in the modified
mesh is 779,946. Figure 23 presents the strengthening shock front with time at t=0.2 sec,
and the Figure 24 presents the mesh refined at this time to further resolve the shock. The
velocity and the pressure distributions at t=0.3 seconds is presented in Figure 25. We can
clearly see a shock accelerating towards origin. Figure 26 depicts the instant where the
shock reached the origin. Form the pressure distribution we can see a very high pressures
is reached at the instant of shock impact. This collapse occurred after 0.4680 sec indicating
the rapid time scales involved. After the collapse (i.e, impact) of the shock at the origin the
shock wave bounces back and travels away from origin, as shown in Figure 27. The results
predicted were compared against a self similarity solution [31], and the front speed from the

simulations were found to be in good agreement.
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9.2.4 Rayleigh-Taylor Instability

Another important test case was studied to verify the ability of PHASTA-2C to resolve the
propagating interfaces. A Rayleigh-Taylor instability occurs when a heavy fluid pushes into
a lighter one. Imagine a horizontal interface in which a heavy fluid lies above a lighter
fluid, with gravity pointing downwards. The interface in this case is unstable and any small
perturbations to the interface grows with time. The heavier fluid on the top pushes through
these perturbations and long fingers of the heavier fluid reach down into the lighter liquid.

At the same time the plumes of lighter fluid grow upward.
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Figure 28: Ininitla perturbation to the interface and geometry

Simulations were done on a rectangular domain of 1m width and 2m height with walls on
the upper and the lower surfaces and periodic boundary conditions in the horizontal direction.
The mesh consistes of 32x64x1 elements. Both the fluids were chosen to be air with a density
ratio of 2:1. The amplitude of the inital perturbation was 0.015m. The initial sinusoidal
perturbation is shown in the Figure 28. Figure 29 shows the onset of the Rayleigh-Taylor
instability. Figures 30 and 31 shows the non-linear growth of the intrefacial instability.

Finally it assumes the expected mushroom shape at t=8sec, as shown in the Figure 32.
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Figure 29: Onset of instability at t=2.0sec

Figure 30: Further propagation of instability at t=4.0sec
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Figure 31: Formation of Mushroom shape at t=6.0

Figure 32: Further growth of instabilities at t=8.0
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Figure 33: Imploding air bubble in water, initial conditions and mesh
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Figure 34: Early stages of implosion
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Figure 35: Inward acceleration of gas at t=0.05us
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Figure 36: Collapse of the shock at center, t=0.1540us
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Figure 37: Rarefaction wave moving away from the center, t=0.2us
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Figure 38: Shock front crossing the interface, t=0.3us
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9.2.5 Imploding Air Bubble in Water

This problem is the first step to simulate single bubble sonoluminescence (SBL). SBL involves
a series of expansions and compressions of the bubble in a standing acoustic field, a problem
which is similar to the one considered in this section. An air bubble at atmospheric pressure
is driven by the surrounding pressurized liquid(50atm). The initial conditions and the mesh
are shown in the Figure 33. The figure shows the adaptively refined the mesh in the vicinity
of the bubble to resolve the interface accurately. An early stage of implosion is shown in the
Figure 34. As the bubble is compressed the gas inside the bubble gets accelerated as shown
in the Figure 35. Figure 36 shows the instant of the shock collapse (i.e, impact) at 0.1540us.
Figure 37 shows the rarefaction wave moving away from the center, and still at this instant
the bubble is still collapsing. Once the rarefaction wave moving back crosses the interface
(Figure 38), the bubble stops collapsing and starts expanding. This expansions and collapse
continues. The physics predicted by the code is very much similar to the observations made
in experiments. Also, these simulations indicate that neither Taylor, or Farady instabilities

lead to bubble break up. This implies the 1-D simulations of bubble fusion should be realistic.

10 The Analysis of Bubble Fusion

Bubble Fusion may occur if the density and temperature during an implosion are large
enough to induce thermonuclear fusion for solutions in which there is sufficient deuterium
(D) or tritium (T) in the highly compressed vapor. Bubble Fusion has been recently reported
by researchers at ORNL and RPI [32] in cavitation bubbles formed in deuterated acetone
(C3Dg0). Simulations were made to more fully understand these data. A brief description
of the model and simulatios is as follows. The Mi-Gruneisen equation of state for a highly

compressed [31], [33] was used, in particular:

€= — =€+ €T,

e
p
b= pp + pr,
pr = pL'(p, T)& T,

er = G(p, T)T (51)
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where €, and p, are the potential, are the potential, or “cold,” components, and e7 and
pr are the thermal components of the internal energy and pressure, respectively; I' is the
Gruneisen coefficient, and ¢, is the average heat capacity at constant volume, and T is the

absolute temperature of each phase.

The potential, or “cold,” components characterize intermolecular force interactions which
depend on the average distances between the molecules, and thus depend on the density, p.
For rarefied gases, where these distances are very large (i.e., for small densities, p), the
potential components are negligibly small. In contrast, the potential components (g, and
pp) are essential for dense gases (i.e., at high pressure) and for condensed (liquid and solid)
states of matter. The thermal components (¢7 and pr) characterize the internal energy and

pressure due to thermal (chaotic) motion of the molecules.

For most fluids, the potential components can be represented by a Born-Mayer potential

131], [33]:

Py = A(;’L)?/Sexp[b<1 - <”—/j>1/3>1 - K(p—”(})“ﬂ) + Apy, (52)
o 3 — (Poysy 3 P yny AL
p= o pemlb = ()Y = (D) + A, (53)

where, A) K, b, and n are constant coefficients [32], which completely specify the Born-Mayer
potential, and Ag, is a correction for potential energy. We note that the different phases (e.g.,

liquid and vapor) take place only for subcritical conditions. That is, for, p < per, T < Tep.

To simulate electron conductivity in an ionized gas, we assume,

kg = alng + Q2g, (54)

where a4 , azy and m are appropriate constants and T is the effective temperature of the

plasma.

At very high temperatures, where ionization take place, we may use [34]:
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er = &T(1 — Bp) + Bpl(1 — Br)(cop, T + €p) + Br(cy, T + €1)]
pr = pler
I'=T(p)(1 - Bp) + Bpl'p

54 = eap(~ (o)), (k = D, 1)

where [34], ep = R,Tp/M,e; = 2R,T;/M, M is the molecular weight, and the subscripts

“D” and “I” stand for disassociated ionized fluid, respectively.

These equations were evaluated for the special case of spherically symmetric bubble

dynamics, using the following interfacial jump conditions:

"

ﬂ|r:a - Tg|r:a = [T] = 045 m sat
ZRQTsatp|r:a
o7, oT,
iy r=a = Kyt o = " gg (Dylr—a)

where, r = a(t) is the location of the bubble’s interface (i.e., a = R).

Using the Hertz-Knudsen-Langmuir model [35], the phase change mass flux is:

"n__ a (psat(Tl|r:a) - ng|r:a >
V 27ng V T,l|r:a V Tg|r:a

where,

"

2 2 [® 2 __m
x = exp(—Q%) — Q/(7)(1 — ﬁ/o exp(—x*)dzx),Qd = \/ipg“:a\/Rngh:a,

and « is the phase change (i.e., accommodation) coefficient.

(59)

(60)

(61)

(62)

In order to estimate the production of fusion neutrons, the neutron kinetics model given

by Gross [1984] were used in conjunction with the HYDRO code evaluations of the local

bubble implosion thermal-hydraulics. This model uses the weighted cross sections of the

fusion reactions which implicitly assume that the plasma has an equilibrium distribution

and for D/D fusion reactions is given by:
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" = T ) () (63)
while for D/T fusion reactions we have:
d m
" = = = (@0 pyr(n) (nf) (64)

n

where, n;

is the concentration of fusion neutrons produced (eg, neutrons/m?), n}’ is the
concentration of the hydrogen isotope in question (eg, deuterium, D, or tritium, T), and
(cv) are the weighted cross sections. Typical numerical results for D-acetone during the low
Mach number stage of bubble dynamics in the ORNL experiments [32] are shown in Figure
39. It can be seen that shock-induced intensification during bubble cloud collapse [32] was
assumed, and the bubble radius and vapor mass are sensitive to the impressed pressure.
Similar runs have shown that bubble compression is also very sensitive to the temperature of
the liquid pool, Ty. Interestingly, because the phase change coefficient for heavy water, «;, is
relatively low (~0.075) a significant amount of vapor remains during the implosion process,
cushioning the collapse and mitigating the compression. Fortunately, D-acetone has a large
value of a (~1.0), thus it is a much better test fluid. Figures 40 & 41 show the evaluations
of typical ORNL D-acetone test conditions for two different acoustic forcing pressures. It
can be seen that the peak pressure, temperature and density are large. As a result, as can
be seen in Figure 41, about 1.4 neutrons are produced per implosion, which for the forcing
frequency ( 20kHz) used in the ORNL experiments, implies a neutron production rate of
about 3 10* n/s, which is in good agreement with what was actually measured [32]. While
this is not a large neutron intensity, it should be noted that the ORNL experiments only had
one pressure antinode, and no attempt was made to optimize neutron production. In any
event, it appears that HYDRO codes, like the PHASTA-2C code, are capable of simulating
Bubble Fusion phenomena.

It should be noted that, multidimensional phenomena appear to be the key to the pos-
sible development of a nuclear power reactors based on Bubble Fusion. There is significant
pressure intenisfication within and imploding bubble cloud, and this may lead to the com-

binations required for Bubble Fusion [32]. Moreover, in a typical manifestation of a bubble
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fusion nuclear reactor, there might be an acoustically forced deuterated-liquid-filled cham-
ber in which there are multiple antinodes in both the lateral and axial directions. Those
antinodes at low pressure might experience neutron-induced bubble nucleation, as a conse-
quence of the antinodes at high pressure in which there is bubble implosion and neutron
production. This suggests the possibility of a self-sustaining chain reaction. Nevertheless, to
determine the feasibility, stability and efficiency of this concept, one must analyze the inter-
actions within and between the various bubble clusters formed. A detailed 3-D simulation
is essential, and, to the best of our knowledge, PHASTA-2C is the only code in the open

literature which has these capabilities.

11 Conclusions

A state-of-the-art HYDRO code, PHASTA-2C, has been developed. The presented research

clearly demonstrate the following achievements

1. Implementation of the level set method in an adaptive mesh FEM code for solving

multi-phase flow problems
2. Successfully handled the multiphase flows with rapidly changing interfaces
3. Employed the discontinuity capturing techniques for solving flows with strong shocks
4. Demonstrated the ability to predict the compressible gas dynamics
5. Novel applications of the Ghost Fluid method
6. Efficient computations using the adaptive mesh strategy
7. Validated available results in literature

8. The ability to calculate strong bubble implosions, such as, those which may lead to

ultra high temperatures and pressures
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The preliminary studies clearly illustrated the capability of PHASTA-2C to predict both sin-
gle and multiple bubble phenomena including: sonoluminescence, sonochemistry and Bubble

Fusion.
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Vapor Bubble Collapse in Deuterated Acetone, C;D,O
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Vapor Bubble Collapse in Deuterated Acetone, C;D,O
(High Mach Number Stage)
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Vapor Bubble Collapse in Deuterated Acetone, C;D,O
(High Mach Number Stage)
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